University: Basrah College: veterinary Medicine Course Level: Master Course: Food Preservation Topic: Biological Preservation Lecture prepared: Dr. Alaa Alsandaqchi

Biological preservation

Biological process: fermentation

Fermentation method uses microorganisms to preserve food. This method involves breakdown of carbohydrates with the action of microorganisms and/or the enzymes. Bacteria, yeasts, and molds are the most common groups of microorganisms involved in fermentation of a wide range of food items, such as dairy products and meat products. Fermentation enhances nutritional value, healthfulness, and digestibility of foods. This is a healthy alternative of many toxic chemical preservatives.

Classification of fermentation

Fermentation can be **spontaneous** or **induced**. There are different types of fermentation used in **food processing**. Mechanisms of different food fermentation techniques are briefly discussed below:

1. Alcohol fermentation

Alcohol fermentation (ethanol fermentation) is the result of yeast action on the simple sugar called 'hexose' converting this into alcohol and carbon dioxide . The quality of fermented products depends on the presence of alcohol. In this process, air is excluded from the product to avoid the action of aerobic microorganisms, such as the acetobacter. This process ensures the longer shelf life of the products. The following equation illustrates alcohol fermentation by conversion of hexose.

without oxygen

Sugar -----> Ethanol+ Carbon dioxide

2. Vinegar fermentation (acetic acid fermentation) takes place after alcohol fermentation. Acetobacter converts alcohol to acetic acid in the presence of excess oxygen. Under this method, food products are preserved as pickles. Vinegar fermentation results in acetic acid and water by oxidation of alcohol.

oxygen

Ethanol — Acetic Acid+ Water

Note: **Vinegar** is made from a two-step fermentation process. First, alcohol is formed from yeast consuming sugars within fruits and grains. Then, alcohol is transformed into vinegar, oxygen and bacteria of the genus Acetobacter must be present for the second step to take place, acetic fermentation.

3. Lactic acid fermentation takes place due to the presence of two types of bacteria: homofermenters and heterofermenters. Homofermenters produce mainly lactic acid, via the glycolytic (Embden–Meyerhof pathway). Heterofermenters produce lactic acid plus appreciable amounts of ethanol, acetate, and carbon dioxide, via the 6-phosphogluconate/phosphoketolase pathway.

Homolactic fermentation:

1 mol Glucose \longrightarrow 2 moles Lactic Acid

Heterolactic fermentation:

1 mol Glucose \longrightarrow 1 mol Lactic Acid+ Ethanol+ Carbon dioxide

In the fermentation process, different kinds of microorganisms are used exclusively to produce flavor in foods, which are presented in Table 1

Food items	Microorganisms	Flavor compounds produced
Buttermilk	Streptococcus lactis	Lactic acid, diacetyl, small amounts
	Streptococcus cremoris	of acetaldehyde
	Lactobacillus bulgaricus	
Yoghurt	Streptococcus thermophiles	Acetaldehyde and diacetyl acetoin
	Lactobacillus bulgaricus	
Alcoholic fermented milk	Saccharomyces sp.	Ethanol acetoin and diacetyl
	Lactobacillus sp.	
Sauerkraut	Mixed cultures of	Acetate and small amounts of
	Lactobacillus brevis	short-chain fatty acids
	Leuconostoc mesenteroides	
	Lactobacillus plantarum	
Soybean milk	Lactobacillus sp.	Aldehydes including pentanal
	Streptococcus thermophiles	
Soya sauce	Aspergillus oryzae	Organic acids, alkyl phenols, and
	Lactobacillus sp.	pyrazines
	Saccharomyces rouxii	
Tempeh	Rhizopus sp.	Fatty acid
Bread	Saccharomyces cerevisiae	Ethanol
Swiss cheese	Propionibacterium shermanii	Propionic acid
Сосоа	Saccharomyces sp.	Fatty acids and aromatic acids
	Lactobacillus sp.	
	Acetobacter sp.	